Ques	stio	n	Answer	Mark	Guidance
1 (a	a)	(i)	$H_{2}N$ CH $H_{2}C$ $H_{2}C$ CH CH $H_{2}C$ CH CH CH CH CH CH CH C	1	Circles can be around C OR CH atoms but must not include other atoms ALLOW any suitable way of highlighting chiral carbons, e.g. asterisk, * Note : Mark the circles and ignore other working on diagram
		(ii)	 carboxyl OR carboxylic acid, amine, amide, ester must be names 2 marks for 4 correct functional groups √√ 1 mark for 3 correct functional groups √ 	2	ALLOW peptide for amide
(1	b)		H G G H_{3} f G H_{3} f H_{3} H_{3} H_{3} H_{3} H_{3} H_{3} H_{3} H_{2} H_{3} H_{3} H_{4}	4	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW + charge on H of NH₃ groups, ie NH₃⁺ Note: If there are more than three structures shown, credit any correct structures and ignore incorrect structures

Question	Answer	Mark	Guidance
(c)	(adverse) side effects OR toxicity OR irritation ✓	1	 ALLOW a stated adverse side effect, <i>eg</i> allergy, carcinogenic, hyperactivity etc IGNORE references to optical isomers, chirality, etc
			IGNORE vague statements such as harmful to body, dangerous to body
			DO NOT ALLOW obesity, corrosive to body
			ALLOW company liable to litigation/damages
			Note : Scroll down to bottom of page to check for any further writing
	Total	8	

Ques	stion	er	Mark	Guidance
2 (a)		The pH OR point at which the zwitterion exists ✓	1	 ALLOW pH/point at which there is no overall/net charge IGNORE pH/point at which there is no charge/ neutral charge <i>ie overall/net is required</i> ALLOW pH/point at which contains COO⁻ AND NH₃⁺
	(ii)	$H_{3}N \xrightarrow{+} C \xrightarrow{+} C \xrightarrow{-} O \xrightarrow{-} H_{3}N \xrightarrow{+} C \xrightarrow{+} C \xrightarrow{-} O \xrightarrow{+} O \xrightarrow{+} H_{3}N \xrightarrow{+} C \xrightarrow{+} C \xrightarrow{-} O \xrightarrow{+} O \longrightarrow{+} O \longrightarrow{+} O \longrightarrow{+} O \longrightarrow{+}$	2	ALLOW CH ₃ CH(NH ₃) ⁺ COO ⁻ ALLOW CH ₃ CH(NH ₃) ⁺ COOH ALLOW CO ₂ ⁻ and CO ₂ H ALLOW + charge on N or H: ie ⁺ NH ₃ or NH ₃ ⁺ DO NOT ALLOW '' charge on C: ie ⁻ COO DO NOT ALLOW H or CH ₃ missing ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

Quest	ion	er	Mark	Guidance
(a)	(iii)	pH < 3: COOH ✓		ALLOW carboxyl group OR carboxylic acid DO NOT ALLOW 'acid' OR just 'carboxylic' (without 'acid')
		pH > 10: NH₂ ✓	2	ALLOW amino group OR amine
				DO NOT ALLOW if give correct formula but wrong name or correct name and wrong formula eg NH_2 and amide
				IF any carbon chain is shown attached to BOTH functional groups ALLOW 1 mark eg CH ₂ COOH AND CH ₂ NH ₂ for 1 mark CH ₃ COOH AND CH ₃ NH ₂ for 1 mark RCOOH AND RNH ₂ for 1 mark
				IF functional groups are shown the wrong way round, ALLOW 1 mark i.e. NH ₂ COOH
(b)		НОННО NСССС		DO NOT ALLOW more repeat units IGNORE brackets and ' <i>n</i> ' ALLOW end bonds shown as DO NOT ALLOW if end bonds are missing
		peptide link must be fully displayed, i.e. O C C H H V		ALLOW terminal N–H on right (OR C=O on left), ieHOHOIIIIICCNCIIIICH2OHHCH2OHH
		TWO repeat units shown correctly ✓	2	IF peptide bond is shown not displayed, i.e. CONH, 2nd mark can still be awarded

Question	er	Mark	Guidance
(c) (There is no chiral carbon OR there is no asymmetry in the molecule ✓	1	ALLOW there is no asymmetric carbon OR it has no non-superimposable mirror image OR there are not four different atoms/groups of atoms (attached to carbon) OR there are only three different atoms/groups of atoms (attached to carbon) OR because there are two hydrogen atoms on the carbon
	COOH H2N CH2SH HSH2C NH2 V	2	ALLOW Add the same 3-D structure repeated but with 2 groups 'swapped' as after rotation the 2nd isomer is a mirror image of the first, i. COOH H_2N COOH H_2N COOH H_2N COOH H_2N COOH H_2N COOH H_2N COOH H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_2N H_2SH H_2N H_2SH H_2N H_2SH H_2N H_2SH H_2SH H_2SH H_2SH H_2SH H_2SH H_2 (ie connectivity is being tested) ie, ALLOW as in the example but DO NOT ALLOW an attempted NH ₂ shown as below: COOH H_2SH H

Questic	on	er	Mark	Guidance
				For bond into plane of paper, ALLOW:

Question	Answer	Mark	Guidance
(c) (iii)	Disadvantages:		ANNOTATIONS MUST BE USED
	 any two from: (one stereoisomer might have harmful/adverse) side effects ✓ 		IGNORE harmful/adverse effects only
	• reduces the (pharmacological) activity/effectiveness \checkmark		ALLOW a response that implies an increased dose
	 cost of separating stereoisomers OR difficulty in separating stereoisomers ✓ 	2	IGNORE it takes time to separate
	 Synthesis of a single optical isomer any two from: using enzymes or bacteria ✓ using (chemical) chiral synthesis OR using chiral catalysts ✓ using (natural) chiral molecules/compounds ✓ Quality of Written Communication For full marks to be awarded for this question chiral OR enzyme OR bacteria OR catalyst must be spelled correctly at least once in the correct context 	2	ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool' OR L-amino acids / D-sugars

Question	er				Mark	Guidance	
(d)	amino acid number of peaks	isoleucine 6 ✓	leucine 5 ✓	tyrosine 7 ✓	3	1 mark for each number	
(e)	HN HN valine anhyd	NH	Proline and	hydride	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous Common errors: Look for NH ₂ on first structure and NH on second structure	
				Total	19		

G	Questi	ion	Answer	Mark	Guidance
3	(a)	(i)	$C/CH(CH_3)COOH + 3NH_3 \rightarrow H_2NCH(CH_3)COO^- + NH_4^+ + NH_4C/$	1	ALLOW use of two NH ₃ : C/CH(CH ₃)COOH + 2NH ₃ → H ₂ NCH(CH ₃)COO ⁻ + NH ₄ ⁺ + HC/ ALLOW products as above OR H ₂ NCH(CH ₃)COOH + NH ₄ C/ ALLOW use of one NH ₃ : C/CH(CH ₃)COOH + NH ₃ → H ₂ NCH(CH ₃)COO ⁻ + H ⁺ + HC/ ALLOW products as above OR H ₂ NCH(CH ₃)COOH + HC/ For alternatives below, for NH ₄ C/, ALLOW NH ₄ ⁺ C/ ⁻ OR NH ₄ ⁺ + C/ ⁻ for HC/, ALLOW H ⁺ C/ ⁻ OR H ⁺ + C/ ⁻ for HC/, ALLOW H ⁺ C/ ⁻ OR H ⁺ + C/ ⁻ for H ₂ NCH(CH ₃)COO ⁻ + NH ₄ ⁺ ALLOW H ₂ NCH(CH ₃)COO ⁻ + NH ₄ ⁺ ALLOW H ₂ NCH(CH ₃)COO ⁻ + NH ₄ ⁺ ALLOW H ₂ NCH(CH ₃)COO ⁻ + NH ₄ ⁺ ALLOW R in equation in place of CH ₃ (either or both sides) ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
	(a)	(ii)	CH ₃ HOOCCNCCOOH H H ✓	1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW product from carboxylate ion as nucleophile: $\begin{array}{ccc} CH_3 & CH_3 \\ H_2N & C & COO & C & COOH \\ H & H & H \end{array}$

		1	 DO NOT ALLOW any structure containing C OR H (except in OH) ALL bond linkages must be correct, eg the chiral C must be linked to the C of the COOH, the C of the CH₂COOH and the N of the NH₂ (connectivity is being tested) The 2nd mark is for the mirror image of an amino acid. This could be any amino acid EXCEPT glycine
(c) <i>Disa</i>		2	linked to the C of the COOH, the C of the CH_2COOH and the N of the NH_2 (connectivity is being tested) The 2nd mark is for the mirror image of an amino acid.
			DO NOT penalise connectivity more than once ALLOW R in equation in place of CH_2COOH (either or both sides) Each structure must have four central bonds, with at least two wedges, one in; one out For bond into paper, accept:
	 bisadvantages ny two from: (one stereoisomer might have harmful) side effects ✓ reduces the (pharmacological) activity/effectiveness ✓ cost OR difficulty in separating stereoisomers ✓ cynthesis of a single optical isomer ny two from: using enzymes or bacteria ✓ using a chiral catalyst OR transition metal complex/transition metal catalyst ✓ using chiral synthesis OR chiral starting material OR natural amino acid ✓ 	2 max 2 max 8	ANNOTATIONS MUST BE USED ALLOW optical isomer OR enantiomers as alternative for stereoisomers ALLOW a response that implies an increased dose ALLOW biological catalyst ALLOW 'chiral pool' OR L-amino acids OR D-sugars

C	uest	ion	Expected Answers	Marks	Additional Guidance
4	(a)	(i)	adsorption ✓	1	ALLOW partition OR adsorbtion IGNORE solubility OR desorption DO NOT ALLOW absorption
		(ii)	measure how far each spot travels relative to the solvent front or calculate the $R_{\rm f}$ value \checkmark compare $R_{\rm f}$ values to those for known amino acids \checkmark	2	ALLOW compare R_f values to database ALLOW compare to known amino acids DO NOT ALLOW retention times for first mark, but the 2nd mark would be available as \checkmark ECF ALLOW alternative approach: on the same plate compare position of spots \checkmark with known amino acids \checkmark
		(iii)	(amino acids won't separate because) similar compounds have similar $R_{\rm f}$ (values) \checkmark	1	ALLOW spots often overlap OR don't (fully) separate ALLOW they have similar R_f (values) or similar adsoptions or similar retention times ECF to a(ii)
	(b)	(i)	H H ₂ NC OOH R ✓	1	ALLOW RCH(NH ₂)COOH any order for R, NH ₂ and COOH but C must be next to H ' <u>CH'</u> must be shown ALLOW CO_2H brackets around NH ₂ are not essential ALLOW structure
		RE	must attempt 3D symbol in the "tools" to denote whether or not each chiral C is a reflection of the in the question $H_{2N,I_{1},I_{1},I_{2},I_{3}$	3	 each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise.
	a		chiral Cs top chiral C only bottom chiral C only ror images is a mirror image is a mirror image		MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. IGNORE bond linkage for all groups

(c)	$H_{3}^{+} - C_{CH_{3}}^{+} - C_{CH_{3}}^{+} - C_{CH_{3}}^{+} - C_{CH_{2}}^{+} - C_{COO}^{-} - C_{H_{3}}^{+} - C_{COO}^{+} - C_{COO}^{+} - C_{H_{3}}^{+} - C_{COO}^{+} - C_{COO}^{+} - C_{H_{3}}^{+} - C_{H_{$		ALLOW CO ₂ ⁻ ALLOW NH ₃ ⁺ If NH ₃ fully displayed ALLOW + charge on N or H If COO fully displayed ALLOW ⁻ charge on O only
(d)	valine-glycine-leucine ✓	1	ALLOW val-gly-leu DO NOT ALLOW structures
(e)	H₂N(CH₂) ₆ NH₂ ✓ HOOC(CH₂) ₈ COOH ✓	2	ALLOW H ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂ ALLOW HOOCCH ₂ CH ₂
	Total	14	